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Motivation

(Courtesy of A. Lucier)

Understanding leakage risk and ability to 
predict it are key steps for CO2 sequestration

Leakage in Oil & Gas Fields



SW Powder River Basin - Central Rocky Mountains

Case Study Location – CO2 - EOR Pilot

Teapot Dome Oilfield, WY
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Teapot Dome - Geology

(courtesy J. Friedmann)
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• Basement-cored anticline
• West verging fault-propagation fold
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McCutcheon (2003)



• Reservoirs compartmentalized
by oblique strike-slip to normal
faults

Teapot Dome - Geology
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Teapot Dome - Geology

Trap

Structural crest ~ 5320’ (1620 m)
3-way closure bounded by S1 fault
Oil-contact area ~ 1.2 km2

Time structure map Tensleep Fm. Top Seal
Paleosoil + Opeche Shale + 
Anhydrite (Minnekatha member)

Reservoir

Tensleep Formation B - Sand
Interdune deposits (sandstones,
evaporites, etc.)

• Average Porosity 10 % (5 – 20 %)

• Average Permeability 30 mD
(10 – 100 mD)
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Motivation

• Will CO2 Injection Affect Seal Capacity of Bounding

S1 Fault & Integrity of Cap Rock?

Triggering slip on pre-existing fault Hydraulic fracturing of cap rock 



Objective

Reactivated faults provide conduits for fluid migration
(Wiprut & Zoback, 2001)

• Relationship between faults & present day stress field   
in order to understand & quantify risk of leakage
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Tectonic Regimes - Geomechanical Model
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Tectonic Regimes - Geomechanical Model

Normal
S2
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Breakouts

Drilling Induced Tensile 
Fractures

Well A

Wellbore Failure



• Stress orientation Orientation of Tensile Fractures 
Formation Microresistivity Imager (FMI) log

Sv z0( )= ρ g dz
0

z0

∫Sv z0( )= ρ g dz
0

z0

∫
Shmin magnitude• Least principal stress

SHmax magnitude• Max. horizontal stress

• Vertical stress

Geomechanical Characterization - Stress Tensor

Stress Modeling

Density Logs

SHmax 0     0
0        Sv 0
0        0     Shmin

S =

Stress and Failure of 
Inclined Boreholes 

(GMI•SFIB) 



Calculated from Logs• Rock Strength

Mapped from 3D Seismic• Faults

• Pore pressure Direct Measurements

Geomechanical Characterization - Stress Tensor



Stress Orientation from FMI logs - Tensile Fractures

Well 67-1-X-10
(Milliken & Koespel, 2002)
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Stress Orientation from FMI logs - Tensile Fractures
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• Stress orientation very consistent in
analyzed wells

• 276 # of observations

• Range of depths: 400 – 1800 mts
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Present-Day Stress & S1 Fault
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• Presence of Tensile Fractures

• No Breakouts Observed

• Seismic Observations
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SHmax & Shmin Magnitudes

24 - 28 Shmin [Mpa]
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Strike–Slip/Normal Faulting Environment

depth Sv Pp
(mt) Mpa Mpa

1656.3 40.6 16.6

Well 67-1-x-10
CO = 5533 - 42



Stress Summary

SS/NF Environment



Fault Characterization

S1 Fault

Exported S1 Fault Surface
Tensleep Formation

McCutcheon (2003)
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Calculating the Fault Slip Potential Using Coulomb Criterion

τ = μ (Sn - Pp) Coulomb Criteria

Ppc = Sn - τ /μ critical Pp

Ppc - Pref = Critical Pressure Perturbation

t =   S  n̂
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Critical Pressure Perturbation on S1 Fault
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Excess Pore Pressure due to Gas Buoyancy

Schematic Geologic
Cross-Section

Pore Pressure
Profile



Will the S1 Fault Reactivate?

This corresponds to CO2 column
height of ~2500 m (den = 700 kg/m3)

At Tensleep depth it would
require ~16 MPa of excess

pressure to cause fault to slip
The average structural thickness

of the Tensleep Fm. is ~ 100m
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Future Work

• Refine Stress Model 
• Improve rock strength 

• LOT Tensleep (mag Shmin) 
• LOT Cap-Rock

• Refine Structural Mapping
• Vertical Extent of S1 Fault
• Other faults? sub-seismic

• Improve TD Conversion

Avoid hydrofracturing
Cap-Rock
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